Estrategias para la inspección óptima de estructuras de hormigón armado sujetas a corrosión

Autores/as

  • P. D. Benítez Mongelós Universidad Nacional de Itapúa, Facultad de Ingeniería
  • E. Rocha CIDMA, Departamento de Matemáticas, Universidad de Aveiro
  • F. Rodrigues RISCO, Departamento de Ingeniería Civil, Universidad de Aveiro

Palabras clave:

Analisis de eficiencia, carbonatacion, corrosion, durabilidad, hormigon armado, inspeccion, mantenimiento, modelo de decision, optimizacion

Resumen

Gran parte de las estructuras de hormigón armado se han construido en la primera mitad del Siglo XX, por lo que su vida útil se encuentra actualmente en una etapa crítica desde la perspectiva del mantenimiento. Uno de los mecanismos de degradación más frecuentes y costosos en este tipo de infraestructura está asociado con la corrosión del refuerzo inducida por el fenómeno de carbonatación. Bajo este contexto, el objetivo de este artículo fue la formulación de un modelo de toma de decisiones para la planificación de la inspección óptima. Los tiempos de inspección fueron optimizados considerando la incertidumbre inherente al proceso de degradación y una compensación entre los costos de inspección y la capacidad de servicio de la estructura. Se ha elaborado un análisis de eficiencia a través de dos enfoques: el Análisis de Frontera Estocástica y el Análisis de Envolvente Multidireccional. Este análisis proporciona una evaluación que reduce el número de técnicas de inspección necesarias y el intervalo de tiempo entre inspecciones para proporcionar no solo una solución óptima, sino también más eficiente. Así, el resultado de esta investigación comprende un modelo para la formulación de la estrategia de inspección más adecuada que se aplicará durante su vida útil.

Citas

Correa E, Peñaranda S, Castaño J, Echeverria F. “Concrete deterioration in Colombian urban atmospheres”.

Revista Facultad De Ingeniería - Universidad De Antioquia. 2010; (52), pp. 41-6.

Fan Y., Hu Z., Zhang Y., Liu J . “Deterioration of compressive property of concrete under simulated acid rain

environment”. Construction and Building Materials. 2010; 24(10), pp. 1975-83.

doi:10.1016/j.conbuildmat.2010.04.002.

Folic R. “Durability design of concrete structures, Part 1: Analysis fundamentals”. Architecture and Civil Engineering. 2009; 7(1), pp. 1-18. doi:10.2298/FUACE0901001F.

Roque J, Moreno Junior A. “Consideraçoes sobre vida útil do concreto”. 1er Encontro Nacional de Pesquisa- Projeto-Produçao em Concreto Pre-moldado. Sao Carlos, Brasil.; 2005, p. 1-12. doi:10.1590/S0034-89102007000900003.

Dyer T. “Concrete Durability”. Florida: Taylor & Francis Group; 2014. ISBN 9780203862117.

Ekolu SO. “A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete”. Construction and Building Materials. 2016; 127, pp 306-20.

doi:10.1016/j.conbuildmat.2016.09.056.

Endrenyi J, Aboresheid S, Allan RN, Anders GJ, Asgarpoor S, Billinton R, et al. “The present status of maintenance strategies and the impact of maintenance on reliability”. IEEE Transactions on Power Systems 2001; 16(4), pp. 638-46. doi:10.1109/59.962408.

Kim S, Frangopol D. “Decision making for probabilistic fatigue inspection planning based on multi-objective optimization”. International Journal of Fatigue. 2018; 111, pp. 356-68. doi:10.1016/j.ijfatigue.2018.01.027

Malioka V. “Condition indicators for the assessment of local and spatial deterioration of concrete structures”. 2009. doi: 10.3929/ethz-a-006077800.

Mutz R, Bornmann L, Daniel HD. “Are there any frontiers of research performance? Efficiency measurement of funded research projects with the Bayesian stochastic frontier analysis for count data”. Journal of Infometrics 2017; 11(3), pp. 613-28.

doi:10.1016/j.joi.2017.04.009.

Coelli T, Prasada Rao D, O'Donnell C, Battese G. “An introduction to efficiency and productivity analysis”. New York, USA.: Springer; 2005. ISBN 0-387-25895-7.

Holmgren J. “The effects of using different output measures in efficiency analysis of public transport operations”. Research in Transportation Business & Management. 2018; (February). doi:10.1016/j.rtbm.2018.02.006.

Novaes A, Silveira S, Medeiros H. “Efficiency and productivity analysis of the interstate bus transportation industry in Brazil”. Pesquisa Operacional. 2010; 30(2), pp. 465-85.

Fernández-López XL, Coto-Millán P. “From the Boom to the Collapse: A Technical Efficiency Analysis of the Spanish Construction Industry during the Financial Crisis”. Construction Economics and Building 2015; 15(1), pp. 104-17. doi:10.5130/ajceb.v15i1.4168.

Frangopol D, Lin K, Estes A. “Life-Cycle Cost Design of Deteriorating Structures”. Journal of Structural Engineering. 1997; 123(10), pp. 1390-401.

Yoon I, Copurolu O, P ark K. “Effect of global climatic change on carbonation progress of concrete”. Atmospheric Environment. 2007; 41, pp. 7274-85. doi:10.1016/j.atmosenv.2007.05.028

Tuutti, K. “Corrosion of steel in concrete”. Stockholm: Swedish Cement and Concrete Research Institute. 1982

Ellingwood B, Mori Y. “Reliability-based service life assessment of concrete structures in nuclear power plants: optimum inspection and repair”. Nuclear Engineering and Design. 1997; 175, pp. 247-58.

Afzal N, Bjerva M, Henriksen E, Lindgren G. “Reliability Analysis of Reinforced Concrete using Non-Linear Finite Element Analysis”. Master thesis; NTNU - Norwegian University of Science and Technology; 2016.

Neves R, Branco F, Brito J. “A method for the use of accelerated carbonation tests in durability design”. Construction and Building Materials 2012; 36, pp. 585-91.

International Standard ISO 15686-1. “Buildings and constructed assets - service life planning - Part 1: General Principles”. International Standard Organization, 2000.

Cheung M, So K, Zhang X. “Life cycle cost management of concrete structures relative to chloride induced reinforcement corrosion”. Structure and Infrastructure Engineering. 2012; 8(12), pp. 1136-50. doi:10.1080/15732479.2010.507474.

Patil S, Karkare B, Goyal S. “Corrosion induced damage detection of in-service RC slabs using acoustic emission technique”. Construction and Building Materials. 2017; 156, pp. 123-30. doi:10.1016/j.conbuildmat.2017.08.177.

Soliman M, Frangopol D, Kim S. “Probabilistic optimum inspection planning of steel bridges with multiple fatigue sensitive details”. Engineering Structures 2013; 49, pp. 996-1006. doi:10.1016/j.engstruct.2012.12.044

Moughty J, Casas J. “A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions”. Applied Sciences. 2017; 7, pp. 1-24. doi:10.3390/app7050510.

Madureira S, Flores-Colen I, de Brito J, Pereira C. “Maintenance Planning of Pitched Roofs in Current Buildings”. Construction and Building Materials 2017; 147, pp. 790-802. doi:10.1061/(ASCE)CO.1943-7862.0001316.

Sheils E, O'Connor A, Breysse D, Schoefs F, Yotte S. “Development of a two -stage inspection process for the assessment of deteriorating infrastructure”. Reliability Engineering and System Safety. 2010; 95(3), pp. 182-94. doi:10.1016/j.ress.2009.09.008.

Mori Y, Ellingwood B. “Maintainin g reliability of concrete structures. I: Role of Inspection/Repair”. Journal of Structural Engineering. 1994; 120(3), pp. 824-45.

Bogetoft P, Hougaard J. “Efficiency Evaluations Based on Potential (Non-Proportional) Improvements”. Journal of Productivity Analysis. 1998; 12, pp. 233-47.

Charnes A, Cooper W, Rhodes E. “Measuring the efficiency of decision making units”. European Journal of Operational Research. 1978; 2(6), pp. 429-44. doi:10.1016/0377-2217(78)90138-8.

Ramli N, Munisamy S, Arabi B. “Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector”. Annals of Operations Research. 2013; 211(1), pp. 381-98.

doi:10.1007/s10479-013-1441-1.

Xu Y, Qian Y, Chen J, Song G. “ Probability-based damage detection using model updating with efficient uncertainty propagation”. Mechanical Systems and Signal Processing. 2015; 60-61, pp. 958-70. doi: 10.1016/j.ymssp.2014.11.008.

Kim S, Frangopol D. “Inspection and monitoring planning for RC structures based on minimization of expected damage detection delay”. Probabilistic Engineering Mechanics. 2011; 26(2), pp. 308-20. doi:10.1016/j.probengmech.2010.08.009.

Descargas

Publicado

2021-02-08 — Actualizado el 2021-03-15

Versiones