Sistema de Excitación y Compensación para Generadores de Inducción Basado en la Teoría de Potencia Instantánea

Contenido principal del artículo

Aldo Javier Benitez
Ruben Orlando Nuñez
Pablo de la Barrera
Guillermo Oscar Garcia

Resumen

Se reporta la aplicación de la Teoría de Potencia Instantánea a un sistema de generación autónomo trifásico, capaz de alimentar cargas desequilibradas monofásicas y/o trifásicas lineales. Este sistema propuesto se basa en el uso de un motor de inducción (MI) del tipo jaula de ardilla, un sistema de excitación compuesto por un banco de capacitores y un convertidor CC-AC de cuatro piernas que actúa como una fuente de corriente, todos conectados en paralelo, formando lo que llamamos Generador de Inducción (GI). Con esta propuesta es posible extraer corrientes sinusoidales y equilibradas del MI, reduciendo así las perdidas y las fluctuaciones de torque en la maquina; características indeseables que aparecen cuando se alimentan cargas trifásicas desequilibradas. Además, con el uso de un MI tipo jaula de ardilla, el sistema de generación tiene un bajo costo, una robustez adecuada y una mínima necesidad de mantenimiento. Se presentan resultados experimentales y de simulación que validan la viabilidad práctica de la propuesta.

Detalles del artículo

Sección
Artículos Científicos

Referencias

M. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, and Z. Salameh, “A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications,” IEEE Transactions on Sustainable Energy, vol. 2, no. 4, pp. 392–403, 2011.

S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” nature, vol. 488, no. 7411, pp. 294–303, 2012.

F. Blaabjerg, Y. Yang, K. Ma, and X. Wang, “Power electronics - the key technology for renewable energy system integration,” in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Nov 2015, pp. 1618–1626.

M. Singh, S. P. Singh, B. Singh, A. S. Pandey, R. Dixit, and N. Mittal, “Stand alone power generation by 3 ϕ asynchronous generator: A comprehensive survey,” in 2012 2nd International Conference on Power, Control and Embedded Systems, Dec 2012, pp. 1–14.

J. Laghari, H. Mokhlis, A. Bakar, and H. Mohammad, “A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 279–293, 2013.

Z. Chen, J. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” Power Electronics, IEEE Transactions on, vol. 24, no. 8, pp. 1859–1875, Aug 2009.

L. Gumilar, W. S. Nugroho, and M. Sholeh, “Power quality of synchronous generator under conditions of starting large induction motors simultaneously and sequentially,” in 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 2021, pp. 66–71.

P. Aree, “Starting performance of induction motor under isolated self-excited induction geneator,” in 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, pp. 1–5.

M. H. Haque and A. Maswood, “Determination of excitation capacitance of a three-phase self-excited induction generator,” in Power and Energy Society General Meeting, 2012 IEEE, July 2012, pp. 1–6.

P. J. Chauhan and J. K. Chatterjee, “A novel speed adaptive stator current compensator for voltage and frequency control of standalone seig feeding three-phase four-wire system,” IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 248–256, Jan 2019.

M. Kiani and W.-J. Lee, “Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators,” IEEE Transactions on Industry Applications, vol. 46, no. 2, pp. 562–568, 2010.

A. K. Sharma, “Study of wind turbine based seig under balanced/unbalanced loads and excitation,” International Journal of Electrical and Computer Engineering, vol. 2, no. 3, p. 353, 2012.

C. Wessels, N. Hoffmann, M. Molinas, and F. W. Fuchs, “Statcom control at wind farms with fixed-speed induction generators under asymmetrical grid faults,” IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2864–2873, 2013.

F. B. Silva, W. E. Vanco, F. A. da Silva Goncalves, C. A. B. Junior, D. P. de Carvalho, and L. M. Neto, “Experimental analysis of harmonic distortion in isolated induction generators,” IEEE Latin America Transactions, vol. 14, no. 3, pp. 1245–1251, 2016.

V. S. Santos, P. R. V. Felipe, J. R. G. Sarduy, E. C. Quispe, and M. Balbis, “Shaft power estimation in induction motor operating under unbalanced and harmonics voltages,” IEEE Latin America Transactions, vol. 14, no. 5, pp. 2309–2315, 2016.

G. Carrasco, C. A. Silva, R. Pe˜na, and R. C´ardenas, “Control of a four-leg converter for the operation of a dfig feeding stand-alone unbalanced loads,”IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4630–4640, July 2015.

M. Szypulski and G. Iwanski, “Sensorless state control of stand-alone doubly fed induction generator supplying nonlinear and unbalanced loads,” IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1530–1538, Dec 2016.

A. A. Abdel-Aziz, R. A. Hamdy, and A. S. Abdel-Khalik, “Design and performance evaluation of a three-phase self-excited induction generator feeding single-phase loads,” Electric power components and systems, vol. 47, no. 6-7, pp. 486–500, 2019.

E. Muljadi, D. Yildirim, T. Batan, and C. P. Butterfield, “Understanding the unbalanced-voltage problem in wind turbine generation,” in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), vol. 2, 1999, pp. 1359–1365 vol.2.

V. Leon-Martinez, J. Montanana-Romeu, and J. M. Palazon-Garcia, “Unbalance compensator for three-phase industrial installations.” IEEE Latin America Transactions, vol. 9, no. 5, pp. 808–814, 2011.

A. K. Panigrahi, R. Kulkarni, and D. Sadhu, “Design and simulation of innovative hybrid filter for harmonic compensation,” in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–6.

B. Singh, S. Murthy, and R. S. R. Chilipi, “Statcom-based controller for a three-phase seig feeding single-phase loads,” IEEE transactions on energyconversion, vol. 29, no. 2, pp. 320–331, 2014.

L. G. Scherer, R. V. Tambara, and R. F. de Camargo, “Voltage and frequency regulation of standalone self-excited induction generator for micro-hydropower generation using discrete-time adaptive control,” IET Renewable Power Generation, 2016.

L. G. Scherer, C. B. Tischer, and R. F. de Camargo, “Power rating reduction of distribution static synchronous compensator for voltage and frequencyregulation of stand-alone self-excited induction generator,” Electric Power Systems Research, vol. 149, no. Supplement C, pp. 198 – 209, 2017.[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378779617301608

Z. Chen, J. Lu, C. Mao, Y. Zhou, and D. Wang, “Design and implementation of voltage source converter excitation system to improve power systemstability,” in 2015 IEEE Industry Applications Society Annual Meeting, 2015, pp. 1–10.

H. Akagi, “New trends in active filters for power conditioning,” Industry Applications, IEEE Transactions on, vol. 32, no. 6, pp. 1312–1322, Nov 1996. 11

E. W. y M. Aredes H. Akagi, Instantaneous Power Theory and Applications to Power Conditioning. IEEE Press Series on Power Engineering, 2007.

P. Kumar, A. K. Singh, and N. K. Kummari, “p-q theory based modified control algorithm for load compensating using dstatcom,” in 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 591–595.

R. Leidhold, G. Garc´ıa, and M. I. Valla, “Induction generator controller based on the instantaneous reactive power theory,” Power Engineering Review, IEEE, vol. 22, no. 7, pp. 51–51, July 2002.

P. Silva, R. Pinheiro, M. Aguiar, L. Junior, A. Salazar, and C. Cunha, “Implementation of a shunt active filter using the theory of generalized instantaneous power,” in Power Electronics Conference (COBEP), 2011 Brazilian, Sept 2011, pp. 782–787.

B. A. J., de la B. Pablo M, and G. G. O, “Sistema de excitaci´on y compensaci´on de arm´onicos para generadores de inducci´on jaula de ardilla,” in Biennial Congress of Argentina (ARGENCON), 2014 IEEE. IEEE, 2014, pp. 73–77.

A. J. Benitez, F. Botter´on, and G. Garcıa, “Autonomous induction generator feeding non-linear and unbalanced loads,” in 2018 IEEE Biennial Congress of Argentina (ARGENCON), 2018, pp. 1–6.

M. Aredes, H. Akagi, E. H. Watanabe, E. V. Salgado, and L. F. EncarnaC¸A˜ o, “Comparisons between the p–q and p–q–r theories in three-phase four-wire systems,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 924–933, 2009.

F. Rodriguez, E. Bueno, M. Aredes, L. Rolim, F. A. Neves, and M. C. Cavalcanti, “Discrete-time implementation of second order generalized integrators for grid converters,” in Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE. IEEE, 2008, pp. 176–181.

E. M. Asensio, G. A. Magall´an, and C. H. De Angelo, “Control de un sistema h´ıbrido de almacenamiento de energ´ıa para veh´ıculos el´ectricos,” in 2014 IEEE Biennial Congress of Argentina (ARGENCON), June 2014, pp. 570–575.

F. Botterón, R. De Camargo, H. Hey, J. Pinheiro, H. Grundling, and H. Pinheiro, “New limiting algorithms for space vector modulated three-phase four-leg voltage source inverters,” IEE Proceedings-Electric Power Applications, vol. 150, no. 6, pp. 733–742, 2003.