Estrategia de control por curva de caída con reducido costo computacional para inversores monofásicos en paralelo
Contenido principal del artículo
Resumen
Se propone una estrategia de control por curva de caída con reducido costo computacional y elevada robustez ante
incertezas paramétricas para inversores monofásicos en paralelo, utilizando un lazo de impedancia virtual para lograr
una característica predominantemente inductiva a frecuencia fundamental. Todas estas características se consiguen
utilizando un simple controlador integral en el lazo de control de tensión, del cual se analizan los límites de la
ganancia integral para determinar la robustez del sistema ante la variación de la inductancia del filtro LC. La
utilización de una característica inductiva a baja frecuencia hace que aparezca un valor de CC en la corriente del
inductor del filtro LC, la cual produce pérdidas adicionales en este componente. Para solventar este problema, se
propone eliminar esta componente CC mediante la modificación de la característica de la impedancia de salida a baja
frecuencia. Se presentan resultados de simulación que validan la presente propuesta.
Detalles del artículo
Referencias
N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, "Microgrids," IEEE Power and Energy Magazine, vol. 5, pp. 78-94, 2007.
H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, "Review of power sharing control strategies for islanding operation of AC microgrids," Smart Grid, IEEE Transactions on, vol. 7, pp. 200-215, 2016.
J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, "Control of power converters in AC microgrids," Power Electronics, IEEE Transactions on, vol. 27, pp. 4734-4749, 2012.
S. J. Chiang, C. Y. Yen, and K. T. Chang, "A multimodule parallelable series-connected PWM voltage regulator," Industrial Electronics, IEEE Transactions on, vol. 48, pp. 506-516, 2001.
Z. Xiaotian and J. W. Spencer, "Linear Voltage-Control Scheme With Duty-Ratio Feedforward for Digitally Controlled Parallel Inverters," Power Electronics, IEEE Transactions on, vol. 26, pp. 3642-3652, 2011.
B. A. Francis and W. M. Wonham, "The internal model principle for linear multivariable regulators," Applied Mathematics & Optimization, vol. 2, pp. 170-194, 1975.
R. E. Carballo, F. Botterón, G. G. Oggier, and G. O. García, "Design approach of discrete-time resonant controllers for uninterruptible power supply applications through frequency response analysis," IET Power Electronics, vol. 9, pp. 2871-2879, 2016.
D. N. Zmood, D. G. Holmes, and G. H. Bode, "Frequency-domain analysis of three-phase linear current regulators," Industry Applications, IEEE Transactions on, vol. 37, pp. 601-610, 2001.
M. Tomizuka, T.-C. Tsao, and K.-K. Chew, "Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers," in American Control Conference, 1988, 1988, pp. 860-866.
T.-F. Wu, C.-H. Chang, L.-C. Lin, G.-R. Yu, and Y.-R. Chang, "A D-Σ Digital Control for Three-Phase Inverter to Achieve Active and Reactive Power Injection," IEEE Transactions on Industrial Electronics, vol. 61, pp. 3879-3890, 2013.
X. Wang, Y. Li, F. Blaabjerg, and P. C. Loh, "Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters," 2015.
J. M. Guerrero, L. Garcia de Vicuna, J. Matas, M. Castilla, and J. Miret, "Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control," Industrial Electronics, IEEE Transactions on, vol. 52, pp. 1126-1135, 2005.
R. E. Carballo, "Estrategias de control para la conexión en paralelo de inversores en UPS," Tesis doctoral, Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, 2017.
P. Mattavelli, F. Paolo, F. Dal Lago, and S. Saggini, "Analysis of Control-Delay Reduction for the Improvement of UPS Voltage-Loop Bandwidth," Industrial Electronics, IEEE Transactions on, vol. 55, pp. 2903-2911, 2008.
T. B. Lazzarin, G. A. T. Bauer, and I. Barbi, "A Control Strategy for Parallel Operation of Single-Phase Voltage Source Inverters: Analysis, Design and Experimental Results," Industrial Electronics, IEEE Transactions on, vol. 60, pp. 2194-2204, 2013.
R. E. Carballo, F. Botterón, G. G. Oggier, and G. O. García, "Estrategia de Control Droop con Reducido Número de Sensores Para Inversores en UPS," presented at the IEEE ARGENCON 2016, Buenos Aires, 2016, http://www.edutecne.utn.edu.ar/argencon2016/trabajos/IEEE_ARGENCON_2016_paper_295.pdf.
Y. Wei, C. Min, J. Matas, J. M. Guerrero, and Q. Zhao-ming, "Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing," Industrial Electronics, IEEE Transactions on, vol. 58, pp. 576-588, 2011.
J. M. Guerrero, J. Matas, L. G. de Vicuña, M. Castilla, and J. Miret, "Wireless-Control Strategy for Parallel Operation of Distributed-Generation Inverters," Industrial Electronics, IEEE Transactions on, vol. 53, pp. 1461-1470, 2006.
J. M. Guerrero, J. Matas, L. G. de Vicuña , M. Castilla, and J. Miret, "Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance," Industrial Electronics, IEEE Transactions on, vol. 54, pp. 994-1004, 2007.
R. E. Carballo, F. Botterón, G. G. Oggier, and G. O. García, "Droop control with capacitive virtual impedance loop for single-phase parallel inverter systems," in 2018 IEEE Biennial Congress of Argentina (ARGENCON), 2018, pp. 1-6.
P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control vol. 7: McGraw-hill New York, 1994.
E. A. A. Coelho, P. C. Cortizo, and P. F. D. Garcia, "Small-signal stability for parallel-connected inverters in stand-alone AC supply systems," Industry Applications, IEEE Transactions on, vol. 38, pp. 533-542, 2002.